亚洲无码午夜福利视频|日韩国产高清一区二区|欧美老熟妇XB水多毛多|狠狠色成人一区二区三区|在线观看国产精品露脸网站|在线观看一区二区三区视频|激情性无码视频在线观看动漫|99国产精品久久久久久久成人

  • <p id="eaae1"><ins id="eaae1"><optgroup id="eaae1"></optgroup></ins></p><i id="eaae1"><ins id="eaae1"></ins></i>
    
    

        <i id="eaae1"><ins id="eaae1"></ins></i>
      1. <source id="eaae1"></source>
        1. <small id="eaae1"></small>
      2. <i id="eaae1"><ins id="eaae1"></ins></i>
        1. 您的位置:中國(guó)博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > 美國(guó)阿貢國(guó)家實(shí)驗(yàn)室2023年招聘博士后職位(AI/ML用于高能X射線衍射顯微鏡)

          關(guān)注微信

          美國(guó)阿貢國(guó)家實(shí)驗(yàn)室2023年招聘博士后職位(AI/ML用于高能X射線衍射顯微鏡)

          時(shí)間:2023-09-22來(lái)源:中國(guó)博士人才網(wǎng) 作者:佚名

          美國(guó)阿貢國(guó)家實(shí)驗(yàn)室2023年招聘博士后職位(AI/ML用于高能X射線衍射顯微鏡)

          美國(guó)阿貢國(guó)家實(shí)驗(yàn)室(Argonne National Laboratory,簡(jiǎn)稱ANL)是美國(guó)政府最早建立的國(guó)家實(shí)驗(yàn)室,也是美國(guó)最大的科學(xué)與工程研究實(shí)驗(yàn)室之一——在美國(guó)中西部為最大。阿貢前身是芝加哥大學(xué)的冶金實(shí)驗(yàn)室 (Metallurgical Lab),現(xiàn)在隸屬于美國(guó)能源部和芝加哥大學(xué)。諾貝爾物理學(xué)獎(jiǎng)得主費(fèi)米于1942年在此領(lǐng)導(dǎo)小組建立了人類第一臺(tái)可控核反應(yīng)堆(芝加哥一號(hào)堆,Chicago Pile-1),完成了曼哈頓計(jì)劃的重要一環(huán),并且使人類從此邁入原子能時(shí)代。

          Postdoctoral Appointee - AI/ML for High-Energy X-Ray Diffraction Microscopy

          Argonne National Laboratory

          Job Description

          The X-ray Science (XSD) division at Argonne National Laboratory invites applications for postdoctoral researchers position for a project to develop artificial intelligence (AI) and machine learning (ML) methods to enhance high-energy X-ray diffraction microscopy at the Advanced Photon Source. The extreme volume and velocity of information associated with this non-destructive microstructure mapping technique can benefit from AI/ML at each stage of data flow, from the sensor to the data center. Because such tools can run at high speeds, thanks to advances in AI streaming inference accelerators, it becomes feasible to extract salient information from in-flight data, in real time, and thus both enabling fast feedback and reducing downstream computational burden. The successful candidate will conduct cutting-edge research in data science and deep learning and apply it to scientific problems, particularly in the materials science and engineering fields. The candidate will play a key role in developing physics-aware AI/ML models, developing workflow building blocks and implement high-speed training on data center AI systems (e.g., Cerebras CS-1 ML accelerator and Argonne's Aurora exascale supercomputer), end-to-end model training workflows and explore AI accelerators for simulation applications.

          Position Requirements

          Basic Qualifications:

          ·Ph.D. in material sciences and engineering or related field obtained within the last three years.

          ·Experience with X-ray science techniques (e.g., tomography, diffraction, etc.).

          ·Software development practices and techniques for computational and data-intensive science problems.

          ·Comprehensive experience programming in one or more programming languages, such as C, C++, and Python.

          ·Ability to provide project leadership.

          ·Exceptional communication skills, ability to communicate effectively with internal and external collaborators and ability to work in team environment.

          ·Ability to model Argonne’s Core Values: Impact, Safety, Respect, Integrity, and Teamwork.

          ·Understand, value, and promote diversity.

          Preferred Qualifications:

          ·Experience with machine learning methods and deep learning frameworks.

          ·Experience on applied machine learning (e.g., successful projects that used ML to resolve scientific problems).

          ·Experience and skills in interdisciplinary research involving computer and material scientists.

          ·Experience with high-performance computing and/or scientific workflow.

          為防止簡(jiǎn)歷投遞丟失請(qǐng)抄送一份至:boshijob@126.com(郵件標(biāo)題格式:應(yīng)聘職位名稱+姓名+學(xué)歷+專業(yè)+中國(guó)博士人才網(wǎng))

          中國(guó)-博士人才網(wǎng)發(fā)布

          聲明提示:凡本網(wǎng)注明“來(lái)源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,文章內(nèi)容僅供參考。

          相關(guān)文章
          海丰县| 许昌市| 兰州市| 谢通门县| 四川省| 凤庆县| 贵定县| 固阳县| 花莲市| 黎城县| 湛江市| 石柱| 巴塘县| 台南县| 宁国市| 肥城市| 华容县| 密云县| 长丰县| 天等县| 庐江县| 额尔古纳市| 台南市| 白朗县| 高阳县| 栾川县| 金昌市| 淮安市| 黄骅市| 高密市| 吉首市| 宜兰市| 繁昌县| 乳山市| 蕲春县| 尉氏县| 林甸县| 浮山县| 博湖县| 宁陵县| 乌拉特中旗|